0=-16t^2+120t+12

Simple and best practice solution for 0=-16t^2+120t+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+120t+12 equation:



0=-16t^2+120t+12
We move all terms to the left:
0-(-16t^2+120t+12)=0
We add all the numbers together, and all the variables
-(-16t^2+120t+12)=0
We get rid of parentheses
16t^2-120t-12=0
a = 16; b = -120; c = -12;
Δ = b2-4ac
Δ = -1202-4·16·(-12)
Δ = 15168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15168}=\sqrt{64*237}=\sqrt{64}*\sqrt{237}=8\sqrt{237}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-8\sqrt{237}}{2*16}=\frac{120-8\sqrt{237}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+8\sqrt{237}}{2*16}=\frac{120+8\sqrt{237}}{32} $

See similar equations:

| 3j+6=38 | | 24,800=p(1+0.03(8)) | | x+23+x=13 | | 3(x+6)=23 | | 2=-3+x/7 | | -2w+46=3w+6 | | 6(-3m+1)=5(-2m-2 | | 5x+4+x=180 | | x+23+x=13=180 | | 36-30-4=x | | 4^3x+8^2x=128 | | 0=1/2x=2 | | 36-(-54)+4=x | | 4-16-3=x | | (-2/3)=(-1/2w)+(1/5) | | 23-x=40 | | 8t-2=14 | | -5/6+1/6x=-1/2-2/3 | | 3x÷4=x÷3 | | G(x)=-4x-5 | | (1/4)^x=8^x+1 | | 3×/4=x/3 | | 4x2-x-4=0 | | 27=2/3m-9 | | 5.3=12n | | 1/3x+(1/3×5)=2 | | 0.05x+0.06x+12=56 | | 1(x+5)=6 | | 5-3x(-6)=x | | 800x=2000-200x | | 3x-5=17x+16 | | 15(x-3)=25 |

Equations solver categories